

MASTER ENERGY REPORT

Business Academy Aarhus

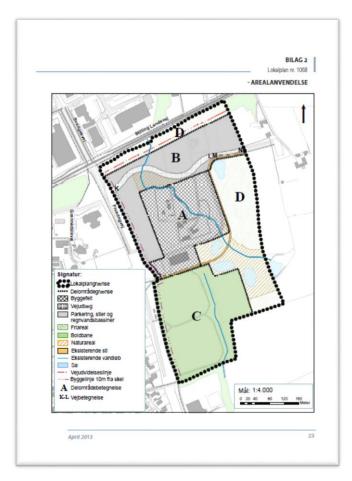
Architectural Technology and Construction Management

3rd semester

13bk2ena, group no 2

Aleksandra Kowalczyk, Joanna Jankowska, Christian Bisgaard Nielsen, Marius Raducan Signed by: Aleksandra Kowalczyk, Joanna Jankowska

10/28/2014


Content

Front page
Content page 1
Description of the building 2
Structure description:
 The building's heated floor area and the heat capacity
 Ventilation
 Solar cells
Result of the energy frame
Conclusion
Appendix:
 U-value external walls
Drawings 17

Description of the building

- Object is the industrialized building which consist multi-purpose hall with office part and locker rooms, long hallway and smaller part with cafeteria and meeting rooms.
- The construction of the building is based on prefabricated elements. Cafeteria part is made of wooden lightweight construction.
- Sports facility is located in Skanderborg, Denmark.
- From the requirements the building must be performed by energy class 2015.

Architectural Technology and Construction Management, 3rd semester, 13bk2ena Group 2: Aleksandra Kowalczyk, Joanna Jankowska, Christian Bisgaard Nielsen, Marius Raducan

The building's heated floor area and the heat capacity

The building is considered as a other it means that is non-residential building. The heated floor area amounts to 579,1 m². Heat capacity is the physical quantity which we can measure and it is the ratio of heat (added or subtract from an object) to the temperature change. Heat capacity is based on SBI213 and our café part consists medium-light type of building components and the heat capacity is 80 Wh/Km². The building is used only during the day, at night is closed. It means that the occupation time equals 98 hours (seven days in a week multiplied with 14 hours per day). The heat supply in the object is district heating. We also implemented solar cells on the south part of the sloped roof. The building is placed exactly to face north we do not have any rotation factors. We also made supplement to energy frame for special conditions which is the ventilation (F_o – working time and q_{m,s} – natural ventilation in summer) also normal usage time of the building. Our supplement equal 101,9 kWh/m². Transmission loss result for the building is 4,4 W/m², which fulfills the building regulations 2010 demands (the demand is 5 W/m²).

					Calculation rules	i:
Name	Caf	feteria			BR: Actual co	See calculation
Other	v	Detached house (detached single Semi-detached and nondetached Multi-storey house, Store etc or O	houses			guide
1		Number of residential units	0	Rotation, deg.		o energy frame for ons, kWh/m ² year
579,1		Heated floor area, m ²	579,1	Gross area, m ²	101,9	
0		Heated basement, m ²	0	Other, m ²		for other than residenti calculation rules: BR:
80		Heat capacity, Wh/K m ²	Start at	End at (time)	Actual conditi	
98		Normal usage time, hours/week	8	22		
Heat sup	ply				Mechanical cool	ing
	-					
District	t v	Basis: Boiler, District heating, Block	heating or l	Electricity	0	Share of floor area, -
			heating or l	Electricity	0	Share of floor area, -
Hea	at dist	Basis: Boiler, District heating, Block tribution plant (if electric heating) n from (in order of priority)	heating or l	Electricity	0	Share of floor area, -
Hea	at dist butior	tribution plant (if electric heating)	-		0 Description	
Hea	at dist bution Electri	tribution plant (if electric heating) n from (in order of priority) ic panels 2. Wood stoves,	gas radiator			
Contril	at dist butior Electri Solar I	tribution plant (if electric heating) n from (in order of priority) ic panels 2. Wood stoves, heat 4. Heat pump 🗹 5. Sol	gas radiator	s etc.	Description	
Contril Contril 1. 1 3. 9	at dist bution Electri Solar I at loss	tribution plant (if electric heating) n from (in order of priority) ic panels 2. Wood stoves, heat 4. Heat pump 🗹 5. Sol	gas radiator	s etc.	Description Comments Transmission los For building ei	is nvelope excl.
Contril Contril 1.1 3.5 Fotal hea	at dist bution Electri Solar I at loss ssion	tribution plant (if electric heating) n from (in order of priority) ic panels 2. Wood stoves, heat 4. Heat pump 🗹 5. Sol	gas radiator	s etc.] 6. Wind mills	Description Comments Transmission los	is nvelope excl.
Contril Contril 1.6 3.9 Total hea Transmi Ventilat Total 38	at dist bution Electri Solar I at loss ssion ion los 3,1 kV	tribution plant (if electric heating) in from (in order of priority) ic panels 2. Wood stoves, heat 4. Heat pump 🗹 5. Sol s loss 9,0 kW 15,6 W/m2 ss without HRV 29,0 kW 50,1 W/m N 65,7 W/m2	gas radiator lar cells 2 (in winter,	s etc.] 6. Wind mills	Description Comments Transmission los For building ei	is nvelope excl.
Contril Contril 1. 8 3. 9 Total hei Transmi Ventilati Total 38 Ventilati	at dist bution Electri Solar I at loss ssion ion los 3,1 kV ion los	tribution plant (if electric heating) n from (in order of priority) ic panels 2. Wood stoves, heat 4. Heat pump 95. So s loss 9,0 kW 15,6 W/m2 ss without HRV 29,0 kW 50,1 W/m	gas radiator lar cells 2 (in winter,	s etc.] 6. Wind mills	Description Comments Transmission los For building er windows and	is nvelope excl.

Area and u-values

The table shows the building's components that influence the total energy result and transmission loss. U-values have been calculated according DS418. Areas are based on the Revit project. From SBI213 guidance we took B factor which is 1. Temperatures conventionally adopted as inside is 20°C degrees and outside -12°C. But Dim. Outside for the floor is 10°C because the floor is connected with the soil. Loss is calculated automatically by the program.

	External walls, roofs and floors	Area (m2)	U (W/m2K)	b	Ht (W/K)	Dim.Inside (C)	Dim.Outside (C)	Loss (W)
		1888,9		CtrlClick	216,291			6339,66
1	External walls LW	728,6	0,18	1,00	131,148	20	-12	4196,74
2	Roof lightweight construction	581,2	0,09	1,00	52,308	20	-12	1673,86
3	Floor	579,1	0,081	0.7	32,835	20	10	469,071

The length of the linear loss and $\Psi\text{-values}$

Lengths of foundation and windows/door joints are based on our calculations from Revit file but the U-value is taken from DS418. B factor as well temperatures are the same as in the area and u-value for building components table.

	Foundations and joints at windows	l <mark>(</mark> m)	Loss (W/mK)	b	Ht (W/K)	Dim.Inside (C)	Dim.Outside (C)	Loss (W)
		182,585		CtrlClick	28,6538			916,923
1	Foundations	165,545	0,17	1,00	28,1427	20	-12	900,565
2	Joints around windows	17,04	0,03	1,00	0,5112	20	-12	16,3584

Windows

Window table shows all the different windows around the café part. Section called "Number" says how many of that specific windows are in whole construction. Orientation says how exposed the window is. The window's slope compares with horizontal. Our windows have slope 90 degree it means that they are vertical. Area was calculated in Revit program. U-values are taken from the producers website. Temperature factor is the same as in the previous examples. G factor (solar transmittance) is 0,63 based on the information given in SBI213 also could be given by the producer. Our windows and doors contains wooden frame and big glass part so factor called F_f (glazing part) is 80%. The windows which have shading F_s factor are on the southern part of the building and its have shadows from east and west side with the horizon about 30 degrees. F_c – Solar screening factor equals 0.4 because we need to have curtain or blinds because without them the building will be heated to much. Loss is calculated automatically.

_			-	_			_	-	_	-	_	_	_	_		-
	Windows and outer doors	Number	Orient	Inclination	Area (m2)	U (W/m2K)	b	Ht (W/K)	Ff (-)	g (-)	Shading	Fc (-)	Dim.Inside (Dim.Outside	Loss (W)	Ext
		25			69,254		CtrlClick	23,6215			CtrlClick				755,89	0/1
1	East windows	4	E	90	1,068	0,075	1,00	0,3204	0,8	0,63	Default	0,4	20	-12	10,2528	0
2	West windows	4	W	90	1,068	0,075	1,00	0,3204	0,8	0,63	Default	0,4	20	-12	10,2528	0
3	South windows	2	S	90	5,5	0,075	1,00	0,825	0,8	0,63	Default eas	0,4	20	-12	26,4	0
4	South windows	2	S	90	2,26	0,075	1,00	0,339	0,8	0,63	Default eas	0,4	20	-12	10,848	0
5	South windows	1	S	90	1,21	0,075	1,00	0,09075	0,8	0,63	Default wes	0,4	20	-12	2,904	0
6	South windows	2	S	90	2,73	0,075	1,00	0,4095	0,8	0,63	Default wes	0,4	20	-12	13,104	0
7	South windows	1	S	90	8,49	0,075	1,00	0,63675	0,8	0,63	Default wes	0,4	20	-12	20,376	0
8	South windows	3	S	90	4,55	0,075	1,00	1,02375	0,8	0,63	Default wes	0,4	20	-12	32,76	0
9	South door	3	S	90	3,64	1,2	1,00	13,104	0,8	0,63		0,4	20	-12	419,328	0
10	South door	3	S	90	1,82	1,2	1,00	6,552	0,8	0,63		0,4	20	-12	209,664	0

Ventilation

The most parts of café area have mechanical ventilation as well natural ventilation provided by windows and doors, only technic room has natural ventilation. All figures are taken from the SBI 213 guidelines. The only one thing which we need to make bigger $g_{n,s}$ ()natural ventilation at summer factor is 1,6 l/s m² (in cafeteria and meeting rooms) because we want to achieve excessive "0" in rooms. This factor is not a part of a mechanical ventilation. It presents air vents which is open only in a summer to have better infiltration.

_														
	Ventilation	Area (m2)	Fo, -	qm (l/s m2)	n vgv (-)	ti (°C)	EI-HC	qn (l/s m2)	qi.n (l/s m2)	SEL (kJ/m3)	qm,s (l/s m2)	qn,s (l/s m2)	qm.n (l/s m2)	qn,n (l/s m2)
	Zone	509,9		Winter			0/1	Winter	Winter		Summer	Summer	Night	Night
1	Toilets	12,1	1	0,8	0,8	18	0	0,13	0,09	1,8	0,8	0,13	0	0,09
2	2 Cafeteria	248,3	1	1,015	0,8	18	0	0,13	0,09	1,8	1,015	1,6	0	0,09
3	3 Technic room	34,4	0	0	0	0	0	0,3	0,3	0	0	0.3	0	0,3
4	Meeting rooms	249,5	1	1,69	0,8	18	0	0,13	0,09	1,8	1,69	1,6	0	0,09

That table shows the air flow for each room which we calculate according to the tables "determination of airflow/ventilation rate".

Room	m2	Air flow (I/s/m2)	Air amount (m3/s)	Energy frame (I/s/m2)
Cafe	247.2	4	0.98	4
Storage	35	1	0.035	1
Techniacal room	21.6	natural ventilation		
H-Wc	7	10	0.01	1.43
Storage	11	1	0.011	1
Wc1	2.5	10	0.01	4
Wc2	2.5	10	0.01	4
Meeting room 1	52.4	6	0.31	6
Meeting room 2	94.4	6	0.56	6
Meeting room 3	103.7	6	0.62	6

Internal heat supply

Section called "Persons" describes the heat contribution from people, according to SBI213 in that building for more populated part is 4 W/m^2 but for not that much populated zones like toilets is 1,5. Apparatus depends on how much electronic stuff is in each space. It is divided for 0 W/m^2 or 6 W/m^2 and it is also according to SBI213 directions.

	Internal heat supply	Area (m2)	Persons (W/m2)	App. (W/m2)	App.night (W/m2)
	Zone	544,3	2060,9 W	3193,2 W	0,0 W
1	Toilets	12,1	1,5	0	0
2	Cafeteria	248,3	4	6	0
3	Technic room	34,4	1,5	6	0
4	Meeting rooms	249,5	4	6	0

Lighting

The table presents lighting in the building. All factor are based on SBI213 direction. For General factors we put 2 W/m² it means that the light is switch on and 5 W/m² as a minimum for lighting conditions in occupied time. Lighting depends of the room if it is big room like cafeteria is 200 lux but for smaller rooms like toilets are 50 lux. DF factor shows 2 if the room has windows and 0 if not. Control section we divided into A or M, because in toilets and technic room we want to switch light automatically but in the rest of rooms is going to be manually. The rest of factor is taken from SBI213 direction.

	Lighting	Area (m2)	General (W/m	General (W/m	Lighting (lux)	DF (%)	Control (U, M, A,	Fo (-)	Work (W/m2)	Other (W/m2)	Stand-by (W/n	Night (W/m2)
	Lighting zone	544,3	Min.	Inst.			U,M,A,K					
1	Toilets	12,1	2	5	50	0	A	0,8	0	0	0	0
2	Cafateria	248,3	2	5	200	2	М	1	1	0	0,1	0.1
3	Technic room	34.4	2	5	50	2	A	0,8	0	0	0	0
4	Meeting rooms	249,5	2	5	200	2	М	1	1	0	0,1	0,1

Heat distribution plant

In the building we decided for district heating and radiators, we do not have floor heating.

Domestic hot water

Normally domestic hot water is heated up to 55 degrees. And average in other building is about 100 L/m^2 . We decided not to use a pump circulation to get hot water in a pipe immediately (because distance from technic room to the kitchen is really big.). Instead of that, we decided to wait few seconds (around 20 seconds) for hot water and save some money.

Description	Domestic hot water	Hot-water tar	nk				
Description	Domestic not water	Description	heat exchanger				
Hot-water co	nsumption (water 55 °C, cold water 10 °C) Average for the building, litre/year per m² of floor area	1	Number of tanks Tank volume, litre (F	1 For solar hea		-water consum state total vol	
Domestic hot	water system Domestic hot water temp., °C	70 Nej 🗸	Supply temperature El. heating of DHW Solar heat tank with	(If 'No' the	boiler operates i		ng)
Add an hot-wa	ter tank by right-click on Domestic hot water at the left	0,2	Heat loss from hot-v Temp. factor, b for			e: b = 0, Outd	oor: b = 1)
		Charging pum For combi-pu	ip imp, state effect as 0	w	Effect, W	Ch	arge effect, kW

Result of the energy frame

Without supplement S	supplement fo	r special conditions Tot	al energy frame
74,1	101,9		176,0
Total energy requiremen	t		124,6
Energy frame low energy b	buildings 2015		
Without supplement S	supplement fo	r special conditions Tot	al energy frame
42,7	101,9		144,6
Total energy requirement	t		118,1
Energy frame Buildings 202	20		
Without supplement S	supplement fo	r special conditions Tot	al energy frame
25,0	101,9		126,9
Total energy requirement	t		85,8
Contribution to energy req	uirement	Net requirement	
Heat	32,2	Room heating	26,9
El. for operation of buildin	ng 36,9	Domestic hot wate	r 5,4
Excessive in rooms	0,0	Cooling	0,0
Selected electricity require	ments	Heat loss from installa	ations
Lighting	25,9	Room heating	0,0
Heating of rooms	0,0	Domestic hot wate	r 0,1
Heating of DHW	0,0		
Heat pump	0,0	Output from special s	ources
Ventilators	10,9	Solar heat	0,0
Pumps	0,1	Heat pump	0,0
Cooling	0,0	Solar cells	0,0
Total el. consumption	67,5	Wind mils	0,0

Conclusion

That result shows that the building fulfills the building regulations demand from 2010, 2015 and also 2020 year. This effect of energy frame is without solar cells. But we want to reduce electricity operation of the building to "0" because it is going to cost too much and we decided to put solar cells on the southern part of the cafeteria roof with the slope 15 degrees. After calculations we know that is needed 139 m² of solar cells.

Solar cells

Description	solar cells
Solar cells	
139	Panel areal, m ²
0,15	Peak Power (RS), kW/m ²
0,94	System efficiency (Rp), -
Orientation	and shadows
S	Orientation, S, SE, E,
15	Slope, °, 0, 10, 20, 30,
0	Horizon cutoff, °
0	Left shadow, ° 0 Right shadow, °

The final result with solar cells

Without supplement	Supplement fo	r special conditions Tota	l energy frame
74,1	101,9		176,0
Total energy requirement	ıt		33,5
Energy frame low energy	buildings 2015		
Without supplement	Supplement fo	r special conditions Tota	l energy frame
42,7	101,9		144,6
Total energy requirement	nt		26,8
Energy frame Buildings 20	20		
Without supplement	Supplement fo	r special conditions Tota	l energy frame
25,0	101,9		126,9
Total energy requirement	nt		20,1
Contribution to energy re	quirement	Net requirement	
Heat	33,5	Room heating	28,1
El. for operation of buldi	ng 0,0	Domestic hot water	5,4
Excessive in rooms	0,0	Cooling	0,0
Selected electricity require	ements	Heat loss from installat	ions
Lighting	24,5	Room heating	0,0
Heating of rooms	0,0	Domestic hot water	0,1
Heating of DHW	0,0		
Heat pump	0,0	Output from special so	urces
Ventilators	10,9	Solar heat	0,0
Pumps	0,1	Heat pump	0,0
Cooling	0,0	Solar cells	35,5
Total el. consumption	64,0	Wind mils	0,0

Appendix

U-value external walls

Construction Architect

Form for calculations of u-values (transmission coefficient) after DS418, Edition 6.

- 1. Heat flow direction:
 - Horizontal (wall) $\Rightarrow B_{ss} = 0,13$ and $B_{sss} = 0,04$ \Box Upwards (Roof) $\Rightarrow B_{ss} = 0,10$ and $B_{sss} = 0,04$ \Box Downwards (floor) $\Rightarrow B_{ss} = 0,17$ and $B_{sss} = 0,04$ at constructions direct against soil, Ex. Ground supported floor is B_{sss} replaced by B_{ss} look at DS418 table 6.9
- 2. Calculation of the uncorrected transmittal coefficient U'

Construction:	Materiale layer	d [m]	λ _{design} [W/mK]	R [m ² K/W]
	Rsi (ventilated cavity) Studs(with insulation in	0,18	0,049	0,13 3,67
	between) Battens (with insulation in between)	0,038	0,038	1
	OSB board	0,012	0,45	0,026
	Gypsum	0,012	0,25	0,048
	Rsi			0,13
			ΣR1 _{layer}	5,004
		U	'1 [W/m²K]	0,19

3. Determination of corrections

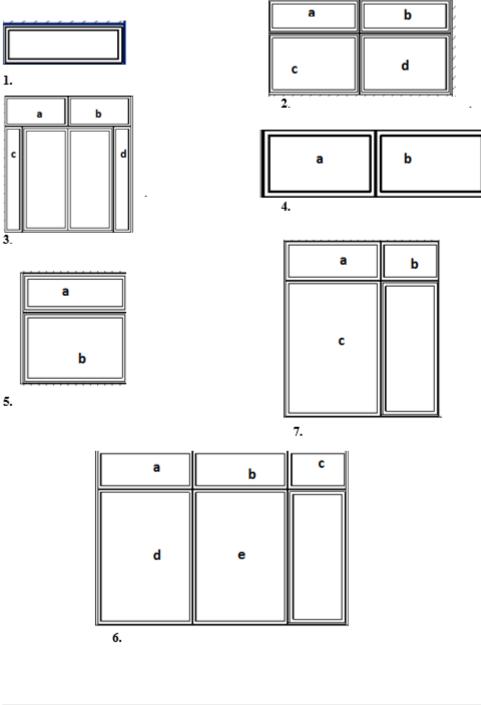
```
Correction for air gabs in the construction \Delta U_{\bullet} look at DS418 A.2

Level 0 \Rightarrow \Delta U'' = 0.00
```

□Level1 ⇒ □Level2 ⇒	∆U" = 0,01 ∆U" = 0,04	$\Delta U_{g} = \Delta U'' \left(\frac{R_{base}}{\Sigma R_{base}} \right)$	$\Delta U_{g} = 0,00 =$	
Correction for ties A	LL look DS418	table A.3.2		
Read All				
Calculation of the co	prrected transm	issions coefficient U		
$U = U' + \Delta U_{g} = $	0,19			

23-10-14

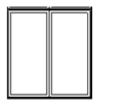
4.

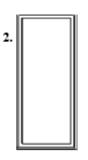

• Studst (with insulation between) = 0,049 was calculate by using formula:

 $\Lambda' = \lambda_{wood} * L_{wood} + \lambda_{insulation} * I_{insulation} / I_{c/c}$

Surface of external wall:

(65,4+15+2,10+26,34+6,63+26,31+8,96+14,85)*4,4=165,59*4,4=728,60 [m2]


Windows:



23-10-14

Construction Architect

Doors:

Orientation	Window	Number of it	Surroundings
West+east	1) 1,608*0,428=0,69	8	(1,780*0,600)-0,69=0,39
	∑=8*0,69=5,52		∑=8*0,39=3,12
South	2)a: 1,45*0,428=0,62 b: 0,62 c:1,45*0,916=1,33 d:1,33 a+b+c+d=3,9 ∑:2*3,9=7,8	2	3,23*1,700=5,5 5,50-3,9=1,6 ∑:1,6*2=3,2
	3) a:1,15*0,498=0,57 b:0,57 c:0,25*1,986=0,51 d:0,51 a+b+c+d:2,16 Σ:2*2,16=4,32	2	ab: 2,49*0,612=1,53 cd: 0,35*2,100=0,73 0,73*2=1,47 1,47+1,53=3 3-2,16=0,84 Σ: 2*0,84=1,68

Orientation	Window	Number of it	Surroundings
	4)a:0,88*0,49=0,43	1	0,612*1,98=1,21
	b: 0,43		1,21-0,83=0,35
	a+b: 0,86		Σ:0,35
	∑:0,86		
	5) a:1,45*0,428=0,62	2	1,61*1,7=2,73
	b:1,45*0,916=1,32		2,73-1,94=0,79
	a+b: 1,94		∑:1,58
	∑:1,94*2=3,88		
	6) a: 1,39*0,498=0,67	1	A:b:c 3,83*0,612=2,34
	b:0,67		D:e 2,93*2,10=6,15
	c:0,81*0,498=0,40		A+b+c+d+e: 8,49
	d:1,36*1,986=2,7		8,49-7,14=1,35
	e:2,7		Σ:1,35
	a+b+c+d+e: 7,14		
	∑:7,14		
	7) a:1,36*0,498=0,68	3	A:b2,37*0,612=1,45
	B:0,81*0,498=0,40		C:1,48*2,100=3,1
	C:1,36*1,986=2,70		A+b+c:4,55
	A+b+c: 3,78		4,55-3,78=0,77
	∑:3,78 * 3=11,34		∑:0,77*3=2,31

23-10-14

Construction Architect

Doors:	Doors:					
Orientation	Door	Number of it	Surroundings			
	1) 0,76*1,916=1,45	3	1,78*2,046=3,64			
	1,45*2=2,9		3,64-2,9=0,74			
South	∑:2,9*3=8,7		∑:0,74*3=2,22			
	0,74*1,916=1,41	3	0,89*2,046=1,82			
	∑:1,41*3=4,23		1,82-1,41=0,41			
			∑:0,41 * 3=1,23			

A2: 3,12+3,2+1,68+0,35+1,58+1,35+2,31+2,22+1,23=17,04 728,60-17,04=711,56 (A1)

Perimeter windows:

 $\begin{array}{l} 1) & (2*1,780+2*0,600)*8=(3,56+1,2)*8=4,76*8=38,08\\ 2) & (2*5,5+2*1,6)*2=(11+3,2)*2=14,2*2=28,4\\ 3) & (2*2,49+2*0,612+4*2,100+2*0,35)*2=(4,98+1,22+8,4+0,7)*2=15,3*2=30,6\\ 4) & (2*0,612+2*1,98)=(1,22+3,96)=5,18\\ 5) & (2*1,61+2*1,7)*2=(3,22+3,4)*2=6,62*2=13,24\\ 6) & (2*3,83+2*0,612+2*2,100+2,93)=(7,66+1,22+4,2+2,93)=16\\ 7) & (2*2,37+2*0,612+2*2,100+1,48)*3=(4,74+1,22+4,2+1,48)*3=11,64*3=34,92\\ \end{array}$

Perimeter doors:

1)(1,78+(2*2,046)*3=(1,78+4,09)*3=5,87*3=17,61 2) (0,89+(2*2,046)*3=(0,89+4,09)*3=4,98*3=14,94

Lk=198,97 [m]

Ψk=0,01 (table 6.7.1)

 $U^{\circ} = A_l * U_l + Lk * \Psi_k / A_l + A_2$

U'=(711,56*0,19)+198,97*0,01/728,60=135,19+1,987/728,6=0,18 W/m²K]

Final U-value: $U = U' + \Delta U$

Final U-value: $U = 0,18 [W/m^2K]$

Note:

 Ψ_k – it shouldn't be added to calculations because it is wood wall with studs, so there is no cold bridges (normally Ψ_k will make the u-value bigger).

The final u-valuse should be 0.19 [W/m²K]

U-value roof

Construction Architect

Form for calculations of u-values (transmission coefficient) after DS418, Edition 6.

1. Heat flow direction:

- □ Horizontal (wall) \Rightarrow $B_{ss} = 0,13$ and $B_{ss} = 0,04$ ■ Upwards (Roof) \Rightarrow $B_{ss} = 0,10$ and $B_{ss} = 0,04$ □ Downwards (floor) \Rightarrow $B_{ss} = 0,17$ and $B_{ss} = 0,04$ at constructions direct against soil, EX. Ground supported floor is B_{ss} replaced by B_{ss} look at DS418 table 6.9
- 2. Calculation of the uncorrected transmittal coefficient U'

Construction:	Materiale layer	d [m]	λ _{design} [W/mK]	R [m ² K/W
والمحمد والمحمول ومحمول محمد	Rse			0.04
2월 25일 일도 문화되었다.	Bitumen felt	0.010	0.050	0.2
///////////////////////////////////////	Chipboard	0.012	0.180	0.07
<u>uuuuuuu</u>	Beams + Insulation	0.465	0.04	11.63
	Hydrodiode DPM			
	Troltex	0.025	0.072	0.347
	Rsi			0.10
			ΣRløyer	12.387
			U' [W/m²K]	0.080

3. Determination of corrections

4.

Correction for air gabs in the construction Allo, look at DS418 A.2

□ Level 0 ■ Level 1 □ Level 2	⇒	∆U" = 0,00 ∆U" = 0,01 ∆U" = 0,04	$\Delta U_{g} = \Delta U^{\prime\prime} \left(\frac{R_{\rm term}}{\Sigma R_{\rm layer}} \right)^{2}$	$\int \Delta U_{g} = 0.01 \cdot \left(\frac{11.6}{12.38} \right)$	3 87
Correction for	ties 🍂	U, look DS418			,
Type of tie			Diameter	Thickness of insulation	
Number of ties pr. m ² : 4 ties pr. m ² 8 ties pr. m ²					
Read Δ		_			
Calculation of	the co	rrected transn	nissions coefficient U		
U = U' + 4U	Įg + Δ	Ųt =0.08∙	+0.008	=	0.09

• Beams (with insulation between) = 0,04 was calculate by using formula:

 $\Lambda' = \lambda_{\text{beam}} * L_{\text{beam}} + \lambda_{\text{insulation}} * I_{\text{insulation}} / I_{\text{c/c}}$

 λ^2

r

Architectural Technology and Construction Management, 3rd semester, 13bk2ena Group 2: Aleksandra Kowalczyk, Joanna Jankowska, Christian Bisgaard Nielsen, Marius Raducan

U-value floor

Construction Architect

Form for calculations of u-values (transmission coefficient) after DS418, 7th edition Wooden floor

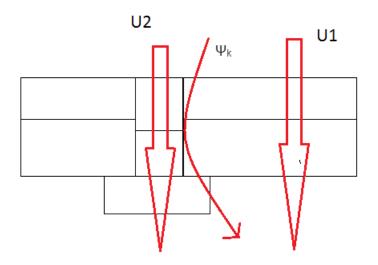
1. Heat flow direction:

Horizontal (wall) \Rightarrow $\mathbb{R}_{ss} = 0,13$ and $\mathbb{R}_{ss} = 0,04$ □ Upwards (Roof) \Rightarrow $B_{ss} = 0,10$ and $B_{ss} = 0,04$ □ Downwards (floor) \Rightarrow $B_{ss} = 0,17$ and $B_{ss} = 0,04$ at constructions direct against soil, Ex. Ground supported floor is Raw replaced by Rk look at DS418 table 6.9.1

Construction:	Materiale layer	d [m]	λ _{design} [W/mK]	R [m²K/W
and a second second second second	R _{si}			0,17
	Tiles	0,015	2,44	0,006
1 21 21 21 2	Reinforced concrete	0,1	2,44	0,04
	Polystyrene	0,3	0,036	8,3
	Capillary breaking layer	0,125	0,08	1,56
	Capillary breaking layer.	0,075	0,08*1,2= 0,096	0,78
	R.			1,5
			ΣR1løyer	12,356
		L	J₁' [W/m²K]	0,081

3. Determination of corrections

Correction for air gabs in the construction Allo, look at DS418 A.2


$\begin{array}{c} \text{Level 0} \qquad \Rightarrow \ \Delta U" \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	= 0,01 $\Delta U_g = \Delta U'' \left \frac{R_{besulation}}{\Sigma P} \right \Delta U_g = 0,00$	
Correction for ties ALL, loc	ok DS418 table A.2	
Type of tie	Diameter Thickness of insul	ation
Number of ties pr. m ² :	4 ties pr. m ² 🗆 8 ties pr. m ²	
Read All		
Calculation of the correcte	ed transmissions coefficient U	
U = U' + AUg = 0,1 +	0,03 = 0,13 [W/m ² K]	

23-10-14

4.

Architectural Technology and Construction Management, 3rd semester, 13bk2ena Group 2: Aleksandra Kowalczyk, Joanna Jankowska, Christian Bisgaard Nielsen, Marius Raducan

Internal foundations are the part of u-value for the floor because between floor and foundation is break of insulation. To calculate this we use formula U'=A₁*U₁ +A₂*U₂ + Ψ_k *I / A₁+A₂

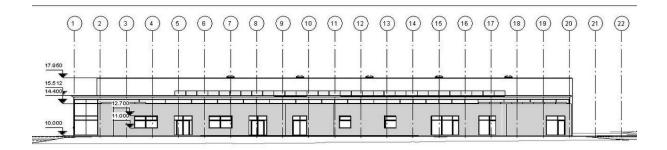

Linear loss

Table 6.12.2 – The joint around windows and doors in insulated timber frame walls with lighweight cladding or with brick work front wall

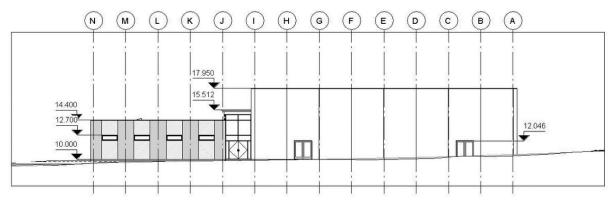
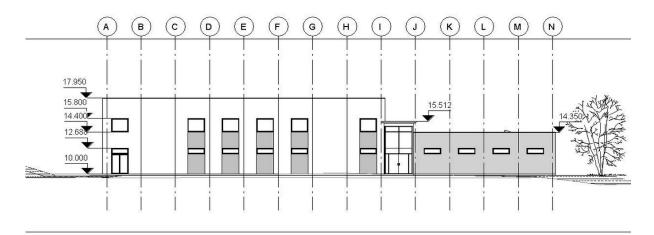
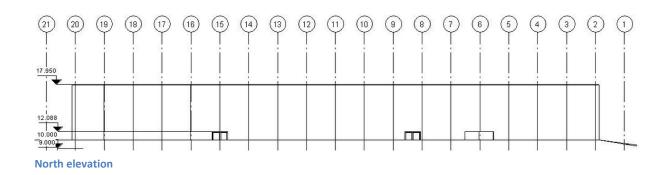
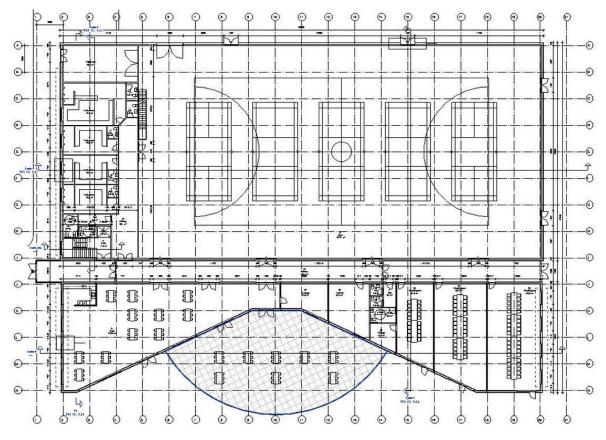
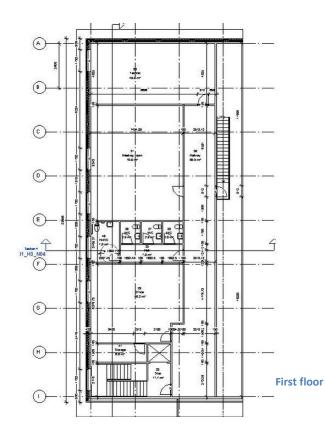

Placement of frame	W/mK	
In line with the insulation	(0,00)	not shown in sketch
60 mm overlapping to the insulation	0,03	see sketch 7 below
20 mm overlapping	0,08	see sketch 8 below
Displaced form the insulation	Values in table 6.12.1b for	see sketch 9 below
•	for "no" cold bridge interruption	

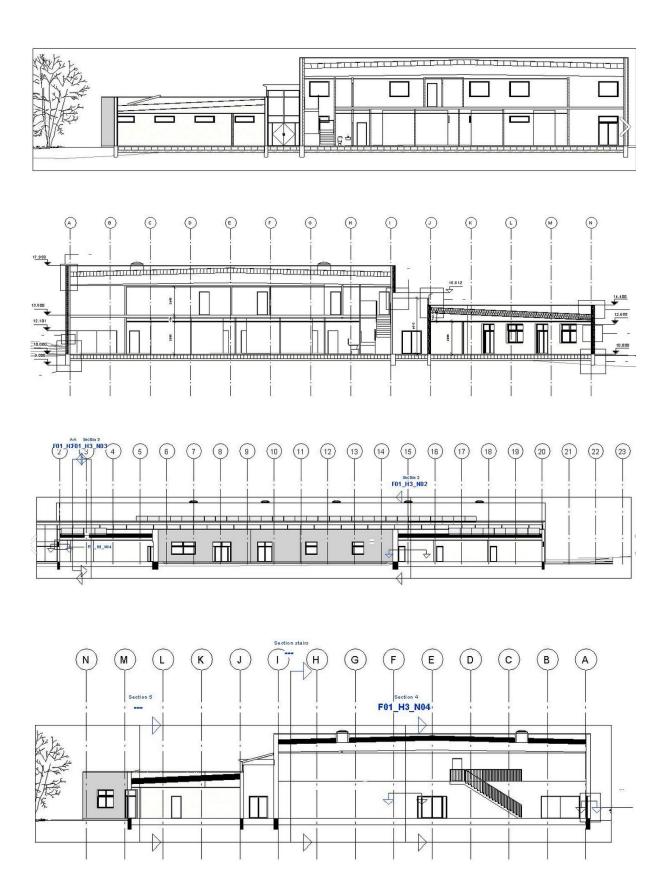
Table 6.13.4c - The linear loss ψ_f in W/mK for foundations at terrain deck, where the concrete plate with knob is casted into the foundation (see figure 6.13.5)


Rear wall		Light weight concrete, brick or concrete			Light weight concrete		Concrete	
Foundation	Insulation above concrete plate:	None			75 mm		75 mm	
	U-value for terrain deck:	0,30	0,20	0,10	0,20	0,10	0,20	0,10
Light clinker concrete upper 40 cm ¹⁾²⁾		0,29	0,21	0,17	0,15	0,12	0,22	0,16
Light clinker c	0,25	0,18	0,14	0,14	0,11	0,20	0,14	
 ¹⁾ Light clinker concrete with thermal conductivity of 0,25 W/mK and width on 39 cm. ²⁾ Central insulation (150 mm) in both courses with thermal conductivity at most 0,04 W/mK. ³⁾ Central insulation (150 mm) in upper 40 cm with thermal conductivity at most 0,04 W/mK. 								

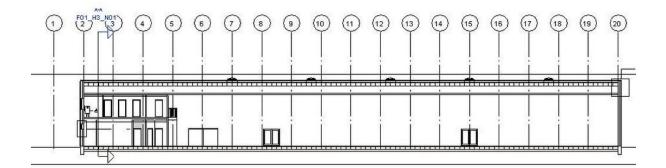

South elevation


West elevation


East elevation



Architectural Technology and Construction Management, 3rd semester, 13bk2ena Group 2: Aleksandra Kowalczyk, Joanna Jankowska, Christian Bisgaard Nielsen, Marius Raducan



Ground floor

Architectural Technology and Construction Management, 3rd semester, 13bk2ena Group 2: Aleksandra Kowalczyk, Joanna Jankowska, Christian Bisgaard Nielsen, Marius Raducan

